
I.J.E.M.S., VOL.7 (2) 2016: 125-129 ISSN 2229-600X

125

GENERATING TEST PATTERNS USING EVOLUTIONARY ALGORITHM
IN ARTIFICIAL INTELLIGENCE

1Sangeeta 2Harsharandip S.Kler
1Department of CSE, DAVIET Jalandhar, Punjab, India

2Department of ECE, Govt. ITI, Jargon, Punjab, India

ABSTRACT
This paper presents a brief introduction to artificial Intelligence and FPGAs [8][11]. We have discussed that how test patterns for
stuck at faults can be formulated in terms of CNF form [4] and this CNF form can be used to generate test patterns using
multiobjective genetic algorithm. We have proposed that by applying a multi-objective genetic algorithm on this CNF form we
can increase number of instances to satisfy boolean equation.

KEYWORDS: Field Programmable Gate Array (FPGAs), Conjunctive Normal Form (CNF), Multi-objective Genetic Algorithm (MOGA),
Artificial Intelligence (AI)

INTRODUCTION
Artificial Intelligence
Artificial Intelligence (AI) is a branch of Science which deals
with helping machines find solutions to complex problems in
a more human-like fashion. This generally involves
borrowing characteristics from human intelligence, and
applying them as algorithms in a computer friendly way. A
more or less flexible or efficient approach can be taken
depending on the requirements established, which influences
how artificial the intelligent behavior appears[13] From the
perspective of intelligence artificial intelligence is making
machines "intelligent" -- acting as we would expect people to
act. Intelligence requires knowledge of Expert problem
solving - restricting domain to allow including significant
relevant knowledge optimization takes places before decision
making.
From a programming perspective, AI includes the study of
symbolic programming, problem solving, and search.
Typically AI programs focus on symbols rather than numeric
processing. Artificial Intelligence AI programming languages
include: – LISP, developed in the 1950s, is the early
programming language strongly associated with AI. LISP is a
functional programming language with procedural
extensions. LISP (LISt Processor) was specifically designed
for processing heterogeneous lists -- typically a list of
symbols. Features of LISP are run- time type checking, higher
order functions (functions that have other functions as
parameters), automatic memory management (garbage
collection) and an interactive environment. – The second
language strongly associated with AI is PROLOG. PROLOG
was developed in the 1970s. PROLOG is based on first order
logic. PROLOG is declarative in nature and has facilities for
explicitly limiting the search space. – Object-oriented

languages are a class of languages more recently used for AI
programming.
Many problems in AI can be solved in theory by intelligently
searching through many possible solutions [14] .Reasoning can
be reduced to performing a search. For example, logical proof
can be viewed as searching for a path that leads from premises
to conclusions, where each step is the application of an
inference rule.[14] Planning algorithms search through trees of
goals and sub goals, attempting to find a path to a target goal,
a process called means-ends analysis.[13] Robotics algorithms
for moving limbs and grasping objects use local searches in
configuration space.[13] Many learning algorithms use search
algorithms based on optimization.
Simple exhaustive searches [13] are rarely sufficient for most
real world problems, the search space (the number of places
to search) quickly grows to astronomical numbers. The result
is a search that is too slow or never completes. The solution,
for many problems, is to use "heuristics" or "rules of thumb"
that eliminate choices that are unlikely to lead to the goal
(called "pruning the search tree"). Heuristics supply the
program with a "best guess" for the path on which the solution
lies. [13] Heuristics limit the search for solutions into a smaller
sample size. [14]

A very different kind of search came to prominence in the
1990s, based on the mathematical theory of optimization. For
many problems, it is possible to begin the search with some
form of a guess and then refine the guess incrementally until
no more refinements can be made. These algorithms can be
visualized as blind hill climbing. We begin the search at a
random point on the landscape, and then, by jumps or steps,
we keep moving our guess uphill, until we reach the top.
Other optimization algorithms are simulated annealing, beam
search and random optimization. [15]

Generating test patterns using evolutionary algorithm

126

ARTIFICIAL INTELLIGENCE AND
EVOLUTIONARY ALGORITHM
Evolutionary computation uses a form of optimization search.
For example, they may begin with a population of organisms
(the guesses) and then allow them to mutate and recombine,
selecting only the fittest to survive each generation (refining
the guesses). Forms of evolutionary computation include
swarm intelligence algorithms (such as ant colony or particle
swarm optimization) [15] and evolutionary algorithms (such as
genetic algorithms, gene expression programming, and
genetic programming).[10]

Implementation of Evolutionary Algorithm
1. Generate the initial population of individuals randomly

(first generation)
2. Evaluate the fitness of each individual in that population.
3. Repeat on this generation until termination (time limit,

sufficient fitness achieved, etc.)
a) Select the best-fit individuals for reproduction -

(parents)
b) Breed new individuals
c) Evaluate the individual fitness of new individuals.
d) Replace least-fit population with new individuals.

Artificial Intelligence Used In Combinational Circuit
Testing
During recent years, great effort is put to overcome test
generation complexity problem. Artificial intelligence
methods are therefore gained much of attention. One among
these techniques is evolutionary algorithms or often referred
as genetic algorithms. Earlier genetic approach for
combinational circuits was represented in [14]. The key feature
there was the method of monitoring circuit activity network.
The simplicity, robustness, efficiency and effectiveness of
GA make them a promising tool for complex applications.
GA maintains a population pool of candidate solutions called
strings or chromosomes. Each string is associated with a
fitness value determined by a user defined fitness
function.GA starts with an initial population typically
generated randomly and the evolutionary process of
reproduction, crossover and mutation are used to generate an
entirely new population from the existing population. The
new population and the existing population compete for
membership in the generation’s membership pool. Selection
of the chromosomes for new population is governed by the
replacement strategy.

The old population is discarded. The sequence of selection,
crossover, and mutation completes one generation cycle.GA
progresses through generations until the goal is reached such
as fixed number of generations. So GA algorithm can be
used to optimize the process of exploring.

Automatic Test Pattern Generation Using SAT

 Given a Boolean formula F (x1, x2, xn), Boolean
satisfiability (SAT) asks if there is an assignment to the
variables, x1, x2, xn, such that F evaluates to 1. If such an
assignment exists, F is said to be satisfiable, otherwise, it

is unsatisfiable. A SAT solver serves to answer the
Boolean satisfiability problem.

 For practical purposes, modern day SAT solvers work on
Boolean formulae in Conjunctive Normal Form (CNF).
Boolean formulae in CNF consist of a conjunction of
clauses. A clause is a disjunction (logical OR) of literals
and a literal is any Boolean variable, x belongs {0,1}, or
its complement. Any Boolean formula can be converted
to CNF

(A+ B+C). (A+B+C)

A Boolean formula in CNF form[8]

 In CNF, the problem of SAT can be rephrased to the
following: Given a Boolean formula, F(x1; x2;…; xn), in
Conjunctive Normal Form (CNF), seek an assignment to
the variables, x1; x2;…;xn, such that each clause has at
least one literal evaluating to 1.

Applying Multi Objective Genetic Algorithm to Test
Pattern Generation
MOGA can be used in ATPG for exploring the work space.
In genetic terms every test vector is considered as a
chromosome and set of test vector is called as population. The
ATPG algorithm performs in two phases. In the first phase the
initial population is being generated with the help of pseudo
random process. In the second phase the GA phase the test
vectors are evolved based on fitness function[6].The fitness
function used is
Fitness = NFi
Where NFi is the number of faults detected.
{

FL= {total number of faults}
initial pop=phase I (FL);
if (FL =NULL)
break;
phase II (initial pop, FL);

}
Figure 4.1: Pseudo-code of overall GA based test pattern
generation
Phase I
In this phase the initial sequences composed of M vectors are
generated based on pseudo random process. The generated
sequences are fault simulated for the faults in the fault list. If
the sequence detects fault that fault is removed from the fault
list and the corresponding sequence is added into the solution
set. If no faults are detected by the sequence, then the last
sequence generated in the corresponding cycle is added to the
set. This process is repeated for max_iter.

Function Phase I
initial pop (FL)
for (i=0; i<max_iter, i++)
{

initial pop=phase I(FL);
randomly generate sequences of length L;

for (each sequence)
{

I.J.E.M.S., VOL.7 (2) 2016: 125-129 ISSN 2229-600X

127

if sequence detects faults in the fault list
{

add sequence to the test set;
drop the faults detected by that sequence;

}
}
return (initial population);
}
Figure 4.2: The Pseudo-code of Phase I

Phase II
The initial population of GA is composed of the sequences
generated in phase I. To generate a new population from the
existing one, two individuals (parents) are selected and
crossed to create two entirely individuals (child) and each
child is mutated with some small mutation probability. The
selection operator is rank based selection. In rank based
selection, the solutions are sorted according to their fitness
from the worst (rank 1) to the best (rank N).Each member in
the sorted list is assigned a fitness equal to the rank of the
solution in the list. Thereafter the proportionate selection
operator is applied with the ranked fitness value and better
solutions are chosen. The two parents are crossed to create
two entirely new individuals (i.e.) child and each child is
mutated with some small mutation probability. The two new
individuals are than placed in the new population and the
process continues until the generation is entirely filled. The
previous population is discarded. Crossover used is one point
crossover. A crossover probability of 1 and mutation
probability of 0.01 is used in all circuits. The no_gen is
assumed to be 8, to reduce the execution time. During test
generation pop_size of 16 is used.
Function Phase II
{

Initial pop from phase1;
for (l=0;l<no_gen;l++)
{ for (k=0; k<popsize;k++)

{ select two individuals from
population;
apply crossover with probability 1;
apply mutation with probability 0.01;}
compute fitness of the individuals;
for (each sequence)
if (sequence detects the faults in the fault list
{ add sequence to the solution set;

drop the faults detected by the
sequence;

}
}

}
Figure 4.3: Pseudo-code of Phase II

RESULTS
All experiments have been performed using the MATLAB. In
all cases the population size is fixed, the standard 1-point and
2-point crossover operator has been applied at a 50% rate, the
mutation is 0.1% and selection is performed using the roulette
wheel selection algorithm. The algorithm scans the genes in a

random order each gene is flipped, and the flipped is accepted
if the fitness score is maximum. When all the genes have been
tested the next generation is formed from the previous
generation.
Having formulated FPGA testing problem, as SAT instances
as an optimization problem using the Multiobjective Genetic
Algorithm, there are some interesting issues concerning
convergence to solution. First of all, whenever a candidate
solution evaluates to 1, we know that the solution has been
found and search can be terminated. Conversely, there is
strong motivation to continue the search until a solution is
found.
The difficulty, of course is that on any particular run there is
no guarantee that a solution will be found in a reasonable
amount of time due to the increasing homogeneity of the
population as the search proceeds. Parameters for measuring
the quality, computational cost and time of GA.
In order to obtain statistically significant results, several runs
are required for different parameters on the SAT instances.
The quality achieved is measured by the fault detection ratio
which represents the ratio of number of clauses satisfied
divided by total number of clauses. Second parameter, which
is used to measure the computational cost of the genetic
algorithm, is the time to evaluate the output. This measure
does not depend upon the machine used and on the actual
implementation. We specify a search space of size 2n and total
number of iterations taken to find the test vector
Tables & Graphs showing the Results
Table 1, 2 & 3 give the complete testing solution with varying
number of variables from 8,16,32,64,128 respectively. The
number of I/P is given by n and total number of possible
combinations can be 2n.So if value of n is 3 there can be
possible 8 combinations for a circuit. The number of variables
and clauses are sufficient to explain the order of magnitude of
the FPGA testing problem. All simulation is being made by
varying the number of iterations. Number of variables are
fixed as input. Two parameters are observed for different
number of iterations.
First is Fault Coverage ratio and second is time.
The columns in the table record the following data: the
number of Boolean variables correspond to the Testing
function, number of clauses in the Testing function, Fault
Coverage of the algorithm. By Changing the number of
generations and keeping other parameters same

Table 1: Performance of FPGA Testing using Multi-
objective GA with 1 Generations

S.No No of
variables

No. of Clauses
Satisfied

Time Fault
coverage

1 8 1594 0.06 79.6

2 16 2452 0.04 70.0

3 32 4636 0.01 87.4

4 64 9204 0.09 92.0

5 128 14478 0.32 91.0

Generating test patterns using evolutionary algorithm

128

In order to find out the any relation between these parameters
experiment is being carried out with varying number of
generations. As shown in [see table 5.1] the variables are
being varied for fixed generation i.e. 1 in this case. For 8
variables we have total 20 number of clauses. Fault coverage
ratio is calculated for 100 number of runs. It shows the total
number of clauses satisfied are 1578 and total number of
clauses specifically for this case are 2000.

Table 2: Performance of FPGA Testing using Multi-objective
GA with 10 Generations

For next case number of generations are being increased to
10.The number of variables are again varied and number of
runs are fixed as 100.In this case fault coverage ratio improves
as compared to the previous case [see table 5.2] for each
variable. By changing the number of generations to 20
keeping other parameters same now generations are increased
with gap of 10 to get the relation between fault coverage and
generations .Other parameters like number of runs, number of
variables are kept same. Every time number of generations are
increased fault coverage ratio improves. Number of satisfied
clauses are increased from 1588 to 1594.The time required for
this calculation is 0.06 ms.

Table3: Performance of FPGA Testing using Multi-objective
GA with 20 Generations

In order to analyze the results, graphs are being constructed.

Figure 1: Fault coverage vs. Generations

CONCLUSION
Graph shows the effect of increasing the number of
generations with fault coverage ratio. Each generation takes a
different value as input so every generation produces different
value for fault coverage ratio. Fault coverage ratio increases
linearly with number of generations.
From tables [1-3] and their graph it has been shown that
Multiobjective Genetic Algorithm is applied to variety of
SAT instances of FPGA test pattern generation problem,
which gives competitive results. It has been concluded from
the experiments that as the problem size grows up i.e. number
of variables and clauses are increased in the fault coverage
ratio increases.

REFERENCES
[1] Carlos M. Fonsecay and Peter J. Flemingz “An Overview

of Evolutionary Algorithms in
MultiobjectiveOptimization”, April 7, 1995

[2] Paolo Prinetto, Maurizio Rebaudengo,
and Matteo Soriza “GATTO: A Genetic Algorithm for
Automatic Test Pattern Generation for Large
Synchronous Sequential Circuits” IEEE
TRANSACTIOIVS ON COMPUTER-AIDED DESIGN
,VOL. 15, NO. 8, AUGUST 1996

[3] V. Rajesh, Ajai Jain “Automatic Test Pattern Generation
for Sequential Circuits Using Genetic Algorithms” 1063-
9667/9 IEEE 1997

[4] Yong Chang Kim and Kewal K. Saluja“ Sequential test
generators: past, present and future “Integration,the VLSI
Journal Volume 26,Issues 1-2,1 ,Pages 41-54 December
1998

[5] Carlos A Coello Coello., “A Comparative survey of
Evolutionary based Multiobjective Optimization”
December 1998

S.No No of
variables

No. of Clauses
Satisfied

Time Fault
coverage

1 8 1588 0.03 79.4

2 16 2439 0.06 69.6

3 32 4608 0.04 86.9

4 64 9167 0.06 91.6

5 128 14465 0.37 90.9

S.No No of
variables

Clauses
Satisfied

Time Fault
coverage

1 8 1578 0.07 78.9

2 16 2369 0.1 67.6

3 32 4600 0.10 86.7

4 64 9129 0.140 91.2

5 128 14414 0.37 90.6

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

F
au

lt
 C

ov
er

ag
e

Fault Coverage vs Generations

Generatio
n
Fault
coverage

No Of Generations

I.J.E.M.S., VOL.7 (2) 2016: 125-129 ISSN 2229-600X

129

[6] Li Shen “Genetic Algorithm Based Test Generation for
Sequential Circuits” Institute of Computing Technology,
Beijing May 2000

[7] Ying Gao Lei Shi Pingjin Yao ”Study on Multi-
Objective Genetic Algorithm” July,2000

[8] Arslan, T. Horrocks, D.H. Ozdemir, E. Sch. of Eng.,
Univ. of Wales Coll. of Cardiff “Structural synthesis of
cell-based VLSI circuits using a multi-objective genetic
algorithm “ Electronics Letter Volume: 32 Issue 7 ,651 -
652 ISSN: 0013-5194 ,06 August 2002

[9] Gregor Papa ,Tomasz Garbolino ∗,Franc Novak ,Andrzej
H lawiczka Deterministic Test Pattern Generator Design
With Genetic Algorithm Approach Journal of
ELECTRICAL ENGINEERING,VOL.58,NO.3,121–
127,2007

[10] Charles Stroud, John Sunwoo, Srinivas Garimella, and
Jonathan Harris Built-In Self-Test for System-on-Chip:
A Case Study0-7803-8580-2/copyright IEEE 2004

[11] Michael S. Hsiao Virginia Tech, Blacksburg, Virginia
VLSI Principles and Architecture, Pages 161-262 2006

[12] S.Jayanthy M.C.Bhuvaneswari Sri Ramakrishna
Engineering College, Coimbatore, India P.S.G. College
of Technology, Coimbatore, India “Simulation Based
ATPG for Crosstalk Delay Faults in VLSI circuits using
Genetic Algorithm ICGST- AIML journal, ISSN: 1687-
4846, Volume 9, Issue 2, December 2007

[13] McCarthy, John (12 November 2007). "What Is
Artificial Intelligence”

[14] Rajani, Sandeep (2011). "Artificial Intelligence – Man or
Machine" (PDF). International Journal of Information
Technology and Knowledge Management 4 (1): 173–
176.

[15] L. Padma Suresh, Subhransu Sekhar Dash, Artificial
Intelligence and Evolutionary Algorithms in Engineering
Systems: Proceedings of ICAEES 2014, Volume 1

